
Open Science Labs | noWorkFlow - Idea 3
- Verify the reproducibility of an
experiment

Candidate Info
● Name: Joshua Daniel Talahatu
● GitHub: https://github.com/JoshuaGlaZ
● Email: joshuaminex02@gmail.com
● University Course: Informatics Engineering
● University: University of Surabaya
● Time Zone: UTC+07:00

Bio:

Hi, I’m Joshua Daniel Talahatu, currently a second-year Informatics Engineering student from
University of Surabaya. I’m particularly experienced in Python programming, Git for version
control, and general database management. My passion for automation fuels my interest in this
project. Streamlining workflows and reducing manual tasks are core benefits of automation,
which directly aligns with the goals of this project. While my core experience lies in Python for
automation, I'm a fast learner and highly motivated to delve into ASTs implementation and script
analysis.

Project Overview
● Project: Open Science Labs - noWorkflow
● Project Idea/Plan: Verify the reproducibility of an experiment
● Expected Time (hours): 300

Abstract
Develop algorithms by comparing variables value to identify reproducibility using noWorkflow.

Mentors
João Felipe Pimentel, Ivan Ogasawara

Technical Details

https://github.com/JoshuaGlaZ
mailto:joshuaminex02@gmail.com

This project focuses on enhancing the analysis of experiment reproducibility using noWorkFlow.
noWorkFlow is a library that records data lineage to from the origin to current iteration of uses in
experiment trials. This includes the history of data, including its origin, transformations, and
manipulations throughout the experiment. The flow of script execution / steps to run and library
dependencies in the scripts also be included to the information captured by noWorkFlow. These
information then be called provenance data can impact the result / outcome of the experiment
even if the change is minimalistic. noWorkFlow provides functionalities to display the
provenance data, access data, and give visualization for better provenance analysis. But the
current methods available has limited usage when it comes to comparing trials. Current
implementation for comparison only indicates the difference in structure of execution flow. A
newly function now compare & now analyze is able to extend the analysis of provenance data
from trials without have to explicitly and iteratively run methods for each trial id. now compare

also give additional information for differences of values.

Compare Provenance Data

now run is crucial command since it run a script and saving provenance information that
needed for comparison. It shows variable dependencies and their values at different points
during the script's execution. There also other information such as module used, file access,
function calls, and other. Trial data set then stored in SQLite database. Retrieving data needed
to comparison purpose can be query using the following query.

SELECT trial.id AS trial_id,

object.name AS object_name,

object_value.value AS object_value

FROM provenance

INNER JOIN trial ON provenance.trial_id = trial.id

INNER JOIN object ON provenance.object_id = object.id

INNER JOIN object_value ON provenance.object_value_id = object_value.id

WHERE trial.id = ? AND object.name IN (?, ?)

ORDER BY object.name;

This query retrieves data for a specific trial ID (trial.id) focusing on comparing values for
particular objects (object.name). WHERE clause can be used if needed for filtering based on
specific values.

From here, I’ll develop a function similar to now diff, but its core functionality focused on
generating list of differences (deviations) of the trials. Data types of variable play a crucial role in
the comparison process. They can range from simple data types like strings and integer to more
complex structures like a dictionaries / AST containing function call information and lists of
library dependencies. These data types are useful later on for determining appropriate
thresholds that will influence the calculation of reproducible indicators. For instance, an error
might occur when passing data2.dat as an argument, whereas previous iterations with data2.txt

might be considered within the acceptable deviation threshold based on the data type and the
tolerance level defined.

The implementation on calculating the reproducibility indicators mostly factors on the differences
in executions, similar to libraries like pycode_similar that calculate the percentage of plagiarism
of scripts based on the reference scripts. Pycode_similar used difflib to get the differences /
modified scripts from referenced. But instead of giving the percentage of similarity and only 2
scripts, now compare can take 2+ arguments of scripts and give a reproducibility percentage.

Comparing different executions can be used using difflib. Difflib is library that provide functions
to comparing sequences. It gives an output similar to Git uses, unified diff for display of
changes. Differences output should highlight modifications that could influence experiment
reproducibility. This involves meticulously filtering out insignificant chan ges (e.g., whitespace
adjustments) and prioritizing changes that might affect variable usage, function calls, or library
dependencies.

Example Output:

Trial 1 (script.py):

* Lines Modified:

3 import matplotlib.pyplot

4 -

* Function Call Deviations: 2 (update_data function)

* Variable Usage Changes: 1 (variable 'threshold' now used instead of

'tolerance')

Trial 2 (script.py):

* Lines Modified:

-

3 + import numpy

* Library Dependency Addition: 'numpy'

Difflib primarily focuses on line-by-line comparisons, which can be ineffective for scripts with
loops, conditional statements, or function calls. These script elements might change
functionality without necessarily reflecting line-level differences.Therefore, exploring Abstract
Syntax Trees (ASTs) is the preferred approach for script comparisons with more complexity flow.

Reproducible Indicator Algorithm

Design of an algorithm to calculate a comprehensive reproducibility indicator heavily depends
on effective thresholds for acceptable deviations and identifying critical discrepancies.The
choice of similarity measure depends on the data type associated with the provenance data
being compared. For comparing values of the experiment, repr of values is use to compare
values that input is given. Repr provides a string representation of an object, offering a way to

check if values are identical. This can be a quick and simple approach, especially for basic data
types like integers or strings. For a more detailed comparison metric, different data types can be
considered for additional metric. When encounter string-like variables, Jaccard Similarity is one
of the metrics used to calculate the ratio of the intersection size between two sets to the union
size. Whereas numeric variables commonly used Mean Absolute Error (MAE) metric to
calculate the average magnitude of the differences between corresponding values in two data
sets. Abstract Syntax Trees (AST) is probably the main component of the algorithm as it covers
the whole script algorithm. From the recent reading, Tree Edit Distance (TED) is currently used
as a metric that extends Levenshtein Distance to compare hierarchical structures like trees as
it's useful for analyzing any difference code snippets within the provenance data. TED scores
the dissimilarity between scripts and pinpointing potential modifications to the script's logic that
might affect reproducibility. Combining the TED and individual representation information of the
values in string is used to deliver the indicator whether or not experiment trial is reproducible or
not.

Analyze Experiment

now analyze would run the algorithm.py for that has been using data that has been collected
via now compare. After retrieve the input of comparison trials data, It will started calculating the
percentage reproducibility. A list of identified differences on variables between those trials (e.g.,
variable name, execution step, different values in each trial) will using Reproducible algorithm
previously discussed. Result of reproducibility indicator will display on the CLI along with
potential non-reproducible script snippet. Identified code snippets or variable names associated
with significant deviations will be displayed using the format .

References:
https://www.nnlm.gov/guides/data-glossary/data-provenance
https://github.com/gems-uff/noworkflow
https://www.usenix.org/conference/tapp15/workshop-program/presentation/pimentel
https://docs.python.org/3/library/difflib.html
https://github.com/fyrestone/pycode_similar
https://www.researchgate.net/publication/281324160_Tree_edit_distance_Robust_and_memory
-efficient

Benefit to the Community
This project will significantly benefit the research community, particularly those who rely on
reproducible workflows for their experiments. noWorkFlow currently functionalities can reduce
time debugging, increased confidence in results, and enhanced transparency. By enhancing
noWorkflow's capabilities for reproducibility analysis, this project will encourage wider adoption
of the framework within the research community. This will lead to a larger pool of researchers
using standardized practices for scientific workflows, further promoting reproducibility and
collaboration.

https://www.nnlm.gov/guides/data-glossary/data-provenance
https://github.com/gems-uff/noworkflow
https://www.usenix.org/conference/tapp15/workshop-program/presentation/pimentel
https://docs.python.org/3/library/difflib.html
https://github.com/fyrestone/pycode_similar
https://www.researchgate.net/publication/281324160_Tree_edit_distance_Robust_and_memory-efficient
https://www.researchgate.net/publication/281324160_Tree_edit_distance_Robust_and_memory-efficient

Deliverables and Timeline

Before May 1

Better understanding the topic of provenance and scripts similarity algorithms.

Community Bonding Period

● Communicate with the community and get to know the project's workflow.
● Learn noWorkFlow library by reading docs and guidelines to understand its usage

specifically focusing on data access mechanisms.
● Discuss with the mentor to work out more details about the project.
● Set up a development environment and prepare blog posts for weekly reports.

Phase 1

Coding Period (May 27 – July 7)

Week 1
May 27 – June 2

● Familiarize myself with noWorkFlow
● Understand the structure of provenance data database

Week 2
June 3 – June 9

● Design logic for comparing variable values based on data
types and repr of the values.

Week 3
June 10 – June 16

● Implement now compare to compare provenance data by
display list of differences.

Week 4
June 17 – June 23

● Implement value comparison with repr
● Research on AST processing methods

Week 5
June 24 – June 30

● Implement Mean Absolute Error (MAE) for numeric
variables

● Implement Jaccard Similarity for string-like variables

Week 6
July 1 – July 7

● Implement the Tree Edit Distance (TED) algorithm to
compare ASTs.

● Conduct initial testing for newly developed functions.

Evaluation Period (July 8 – July 12)

Phase 2

Coding Period (July 12 - August 19)

Week 7
July 15 – July 21

● Continue TED algorithm with the reproducibility
indicator algorithm.

Week 8
July 22 – July 28

● Define threshold of data types and discrepancies.
● Start integrating now compare of data types for

algorithm.py.

Week 9
July 29 – August 4

● Implement now analyze to calculate the percentage of
reproducibility.

Week 10
August 5 – August 11

● Testing newly functionalities to verify and validate
outputs.

Week 11
August 12 – August 18

● Improve the code quality and refactor code structure.
● Further testing if needed.

Final Week
August 19 – August 25

● Clean up codes and documentation.
● Prepare tutorial / demos for newly implemented

features.

Evaluation Period (August 26 – September 2)

Previous Contributions to the Project
I’m relatively new to open source projects currently, So I don’t have any other open source
contributions.

Why this project?
The reason I’m interested in the project is in its application of script analysis techniques,
particularly the ability to identify changes and highlight specific sections. The ability to analyze
scripts for changes and highlight specific sections intrigue me to apply with automation. For
instance, analyzing shell scripts used in automation workflows could be incredibly valuable.
Furthermore, the potential applications of ASTs extend beyond automation to the development
of more powerful Quality-of-Life (QoL) programs and potentially even testing frameworks.

While I'm relatively new to these specific concepts, my experience with Python programming
and strong foundation in automation principles allow me to grasp them quickly. My passion for
learning and eagerness to contribute to open-source development make me a fast learner who
can quickly become a valuable asset to the project.

Availability
I have a student excursion to Bali starting from July 15th - July 18th, so I may have limited
availability at that time. I plan to manage this by catching up on work upon return. For any other
academic commitments that may arise, such as finals, I can adjust my schedule accordingly to
meet project deadlines. Other than that, I have no other commitments. I plan to allocate at least
30 hours per week, during the 3 month long period.

Post GSoC
After GSoC, I'd love to remain connected with the organization and contribute to the ongoing
development of noWorkFlow or other projects in OpenSouceLabs . I wanted to expand my
contributions to include areas like documentation improvement or testing framework
development. I believe my knowledge gained during the program, combined with my
enthusiasm for automation, will allow me to provide even greater value to the project and the
open-source community. To further prepare for ongoing involvement, I plan to continue exploring
documentation best practices or research specific testing frameworks relevant to noWorkflow.

https://opensciencelabs.org/programs/gsoc/templates/contributor-proposal/#availability
https://opensciencelabs.org/programs/gsoc/templates/contributor-proposal/#post-gsoc

